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ABSTRACT 

Numerical experiments were performed w?th variable resolution two-dimensional rectangular Cartesian grids. 
The shallow-water equations were integrated on several variable-mesh grids and on a constant increment fine- 
resolution grid ; the method of integration used the “box” technique for spatial representation. The grids were designed 
to be used in numerical experiments that examine vortex-type motions that may be embedded in a fairly uniform 
basic current. With this in mind, two systems were investigated: (1) a closed system containing a balanced vortex 
and (2) a semiopen system with east-west cyclic continuity containing a moderately strong easterly jet. The results 
indicate that, for a weak vortex embedded in a zonal current, a 2-step “telescope”-type grid can be used in numerical 
integrations with success; that is, the incurred error is relatively small and the  computation time and computer 
memory requirements are not excessive. For an intense vortex, a graded-type grid yields a relatively better numerical 
integration at the expense of an increase in computation time. 

1. INTRODUCTION 

Considerable interest has been shown in the use of 
variable horizontal resolution grids for numerically in- 
tegrating the equations that govern the behavior of 
meteorological phenomena. Variable increment-space 
meshes have been used with some success in studies of 
models possessing one horizontal space dimension. For 
two horizontal space-dimensioned models, the interest 
has been in the embedding of a fine-resolution mesh in a 
relatively coarse grid to  resolve interesting small-scale 
features that are present in a large-scale environment. In  
this paper, we are concerned with the characteristics of 
fine-to-coarse resolution two-dimensional grids which are 
rectangular Cartesian in nature. These grids are of a type 
that would be useful in the study of vortex-type motions 
embedded in a large-scale flow. The integrations make use 
of a technique that originally appeared in fluid dynamics 
applications, and that has been given the name “box” 
method. The method has the desirable property that the 
momentum and mass of the system are preserved under 
the finite-difference formulation to within time-differencing 
errors because the equations are expressed in flux form. 

The grid systems described here effect a reduction in the 
amount of internal storage needed on a computer when 
compared to a fixed fine-resolution mesh for the same 
region of integration. Also, computing time is reduced 
by the elimination of calculation points; but parts of these 
savings are at  the expense of more sophisticated computer 
programming effort . 

One of the advantages of Cartesian systems is the 
simplicity of the derivatives in both analytic and finite- 
difference form. This is in comparison with variable 
grids that are generated by transforming a desired grid 
structure into a rectangular Cartesian system such as 
was done by Anthes (1970). Methods of the latter type 

increase computation time at each grid point because of 
the added terms in the tendency equations and introduce 
transformation factors in the equations that can result 
in computational difficulties such as those described by 
Shuman and Stackpole (1968). A further problem with 
transformation systems is the definition of the. boundary 
when meshing the transformed grid with a large-scale 
coarse grid. The graded systems described here have a 
smooth transition into the large-scale system with no 
additional computations being needed to merge the 
systems, whereas the non-Cartesian-type grids often 
incur added computations (and perhaps approximations) 
where the grids join together. One experiment (No. 18) 
simulated, to a certain degree, the incorrect handling of 
the boundary; there, different frequency gravity waves 
were generated by reflections at the boundary and the 
effect of their interaction a t  the center of the vortex was 
observed. 

Truncation error propagation can also be a serious prob- 
lem. In  variable-grid computations (as with computations 
done on a map-oriented grid), an upper bound on the 
truncation error is initially given locally by the evaluation 
of the appropriate series expansion remainder term using 
the local value of space increment and derivative maximum 
in this region. If the physical system is principally con- 
tained in the fine mesh and does not interact with the 
environment, the local truncation estimate should hold 
for the forecast period. Otherwise, system interactions will 
admit the large-scale truncation into the h e r  mesh 
computations; this error will dominate throughout the 
remainder of the forecast period. 

9. GRID STRUCTURE 
Three variable-resolution grids and one fixed-resolution 

grid were used in the numercial integrations. The variable 
resolution grids were of two basic types: (1) a constant 
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fine mesh embedded in a constant coarse mesh and (2) a 
fixed fine mesh embedded in a grid system that becomes 
progressively coarser with distance from the central region. 
Both types are members of a generalized family of grids, 
the construction and characteristics of which are described 
in the following discussion.’ 

The basic construction element of the variable-resolution 
grids is a square having side length 6. Each graded grid 
has the following properties: 

1. The area elements (boxes) of the grid structure are squares 
with side lengths that are integral multiples of the basic side length 6. 

2. The boxes increase in area outward from the center in a sys- 
tematic manner. 

3. The geometry of contiguous boxes having equal area is that of 
a “square annulus” (except for the central region). 

As will be shown, the square annulus is not necessarily 
composed of a single ring of boxes. 

The above properties set a requirement that contiguous 
annuli having different area elements must satisfy a t  
their common interface. For definition, consider an inner 
annulus composed of elements having equal area A: 
that is enclosed by an outer annulus with elements 
having area A:. Then, if A,=n6 and A,=n‘8, where n 
and n’ are arbitrary positive integers (n<n’), the length 
of a common side, when expressed in terms of the number 
of boxes in each annulus at  the interface, must he an 
integer relationship. That is, 

Aim= (n6)m= (n’G)m’=A,m’ (1) 

must hold, where m and m‘ are positive integers. We 
will exclude from consideration those cases where n’ is 
an integral multiple of n; in those cases there is a rapid 
variation in grid structure that is not acceptable. We 
wish to construct grids that have a less pronounced 
variation. The minimal increase in box size is given when 
n’=n+l.  If we begin the construction by having the 
central “core” region composed of basic area elements 
only, then the minimal variation requirement allows 
core regions the sides of which are made up of only even 
numbers of basic elements. Hence, for i a positive integer, 
there are (2iX2i) elements in the core. Now let n=1, 
2, . . . also represent the count (increasing outward) of 
the interface between the annuli as defined above. Then 
the only positive integer solutions a t  the nth interface 
for eq (1) above are m,=i(n+l) and mL=i(n). At the 
(n+l)st  interface mn+,=m;+2i; from this we see that 
the index i also represents the number of rings of equal- 
area boxes which make a square annulus. 

The construction for i=1, i=2,  and i = 3  is shown 
in figure 1. Here we note how the index i is the controlling 
factor in the degree of variation possessed by the graded 

1 A clarification of nomenclature should be made at this point. Although the words 
“grid” and “mesh” denote a systematically arranged array of points, we shall use them 
to den@ the“box”structure which is used in theintegration technique. In reality agrid 
or mesh polnt is a point within a box, that figuratively wlll be taken as the center of the 
box. 

TRIPLE ANNULUS SINGLE ANNULUS DOUBLE ANNULUS 

FIGURE 1.-Graded mesh constructions for i= 1 (single amdus), 
i = 2  (double annulus), and i = 3  (triple annulus). The smallest 
box in each case has area=P. The number in the box is the value 
of n [where box area=(n8)2] for the “square” ramulus which 
contains the box. 

TABLE 1.-Percent increase in  box area as a function of A w k e  
boz area= (&)a 

n 1 1  2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

% increase ! 300 125 77 56 44 36 31 27 23 21 19 17 16 

mesh and that the grid variation can be reduced by 
choosing larger values of i, since this essentially intro- 
duces regions of conslant mesh length throughout the 
structure. However, for any value of i, the percent %- 
crease in box area as a function of n (table 1) is largest 
for small values of n, which corresponds to the centrd 
region of the construction. Since this may not be a de- 
sirable feature, modifications to these grids can be made 
based on the following considerations: (1) the overall 
scale of the physical system, (2) the scale of the inter- 
esting variations within the system, and (3) numerical 
stability criterion with regard to computational timer 
needed for the integration. All three of these will de- 
termine the specification of the magnitude of 6. 

The use of a grid devised by the above rules with 
small values of 6 will force the use of small time incsemenh 
in the numerical integration, which can be economksUy 
unfeasible. Also, one desires a variable grid on which 
the major variations in the physical parameters take 
place in the fine-resolution portions of the mesh. Hence, 
item (2) places a restriction on the choice of 6. TGs, 
along with item (l), helps determine the grid index i. 

Since the percent changes of box area are largesb ~ Q I C  

small values of n and this may be undesirable even in 
conjunction with large values of the grid variation index i, 
the central region can be modified by deleting the ~bnrmu& 
for small values of n=1, 2, . . ., (k-I) and replackg 
the deleted inner region with a fixed-resolution mesh, the 
boxes of which have side length k6. This yields a g d e d  
grid structure that has a fine resolution inner region m d  
that gradually increases in “mesh length” toward the 
periphery of the region of interest. The graded g’kls used 
here were constructed in this manner. Table 2 ~ V B S  the 
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TABLE 2.-Characteristics of the grid structures used in  the numerical 

ezpetiments. Here, @ is the area of the basic construction element, 
i i s  the grid variation index, and A is a boz side length. 

Area of fine 
Grid type i d(km) minA=n8 maxA=n6 Totalarea resolution 

( h a )  (kmz) 

Constant:16 - 16.0 15km,n=l - ( 9 W  all 
%Step:15 10 16.0 1 6 h , n = l  30.0km,n=2 (9Oo)z (300)Z 
Graded10 2 2.5 10km,n=4 32.5km,n=13 (910)s (100)a 
Qraded:lS 2 2.5 15km,n=6 32.5km,n=13 (9lO)a (210)Z 

~ ~~ 

Total number of Percent of the Number of boxes 

(210 km)2 region 
Grid type boxes (points) Constant:15 total in the central 

3,600 100 
1,200 33 
1,396 39 
1,316 37 

196 
196 
276 
196 

KM 

FIQIJRE 2.-A section of the northeast quadrant of the 2-Step:15 
grid. The hatched area represents the boundary which encloses 
the entire (900 km)* region. 

characteristics of the four grids used in the integrations. 
The constant-resolution mesh was used to generate com- 
parison control cases for the variable-resolution cases. 
The 2Step:15 ((telescope”-type grid has a 20x20 fine- 
resolution interior mesh surrounded by a coarse mesh; 
a portion of the northeast quadrant of the grid is shown in 
figure 2. Figure 3 shows a similar section of the Graded:15 
mesh, which has an interior 14x14 fine mesh with a 
(15 km)2 box area. The central region of the Graded:lO 
mesh is depicted in figure 4. Here, the interior mesh is 
10x10 and has a box area of (10 km)2. The Graded:lO 
and Graded:15 grids differ in structure only within the 
(75 km)2 central region; the grids are identical otherwise. 
F’rom table 2, we also note the large percent-reduction of 
total number of grid points in going from the constant- 
resolution mesh to  the variable-resolution grids. A sum- 
mary of the graded grid construction follows: 

GRADED 15 
I 

250 

200 

I30  

5 

I00 

50 

‘0 50 SO I30 2W 2 M  1 yx) 350 400 4Y,  

KM 

FIGURE 3.-A section of the northeast quadrant of the Graded:15 
grid. The hatched area represents the boundary which encloses 
the entire (910 km)e region. 

KM 

FIQIJRE 4.-The central region of the Graded:lO grid. 

1. A basic side length S is selected. This is the amount that box 
side length will increase in going outward from one annulus to the 
next. 

2. The grid variation index i (a positive integer) is chosen. The 
initial core region will contain (2i X 2i) basic elements, and a 
square annulus will have i rings of equal-area boxes. 

3. Let n= 1, 2,  3, . . . represent the count of the annuli interfaces. 
At the nth interface, the inner annulus is composed of boxes having 
side length 7x6, and the outer annulus of those with side length 
(n+  1)6. There are i (n+  1) inner annulus boxes at the interface; ad- 
jacent to these are i (n )  outer annulus boxes. 

4. The positive integer k is determined such that k6=AS,in, 
where AS,,, is the desired mesh length for the fine inner region 
grid. The annuli for n= 1, 2, . . . , (k- 1) are deleted and replaced 
with a fixed-resolution mesh which has box side length k6. 

3. THE PHYSICAL MODEL 
AND BOUNDARY CONDITIONS 

The physical model adopted for the experiments was 
governed by the free-surface (shallow water) equations 
written in flux form on an f-plane in 5, y rectangular 
Cartesian coordinate9 (z positive eastward, y positive 
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northward). The equations are 

a ah ahu a (huu)-- (huw)+hfv-gh - 7  (2b) 
at - ax ay ax 

at - ax ay dy 

and 
_--_ a (huw)-- a (hvv)-hhfu-gh ah -. (2c) 

Here, h is the height of the free surface, u is the eastward 
component of the horizontal velocity, v is the northward 
component of velocity, g is a constant gravitational 
acceleration, j is the constant Coriolis parameter, and t is 
time. The fluid is contained in a square basin which has a 
plane level bottom. 

Two sets of boundary conditions were used in the experi- 
ments. In  one set the physical system is closed; that is, the 
fluid is bounded by fixed vertical walls. Here, the no- 
normal transport, free-slip conditions hold and the 
height of the free surface is allowed to change with time. 
In the second set, the east and west boundaries are open 
and the fluid is assumed to have cyclic continuity. The 
north and south boundary conditions are as before. 

The mean total available energy (henceforth called 
total energy)'of the fluid system at  a time t is given by 

(3) 
1 

2u 
- 
TE=- [h(u2+v2)+g(h-5)']da 

where h' is the areal mean height of the fluid, and Q is the 
total area of the region under consideration. The percent 
change in total energy from that at, the initial time t=to 
is defined by - - - -  

ATE= (TE- TEO) /TED. (4) 

Am was computed at  every time step in all of the experi- 
ments. In  the absence of numerical truncation and round- 
off error, A?% is zero with either of the above sets of 
boundary conditions. 

. INITIAL CONDITIONS 
Two sets of initial conditions were used in the numerical 

1. An easterly jet under geostrophic balance, with the 
integrations: 

height and speed fields specified by 

H(y)=g-H cos ( ? r y l Y N )  (5) 

and 

There is no x variation; y ranges in value from y=O at  the 
southern boundary to  y = Y N  at the northern boundary. N 
is a constant with the dimensions of height. Profiles of 
H(y) and U(y) are shown in figure 5 .  With the condition 

1030 1000 97C -20 -10 0 

FIGURE .5.-Meridional profiles of the height and speed fields for 
the easterly jet initial condition. 

that Urn=== -20.0 m/s we have H=30.0 m, which is the 
maximum departure of the fluid from the mean height a. 

2. A circular vortex in gradient balance, with the height 
field specified by 

H ( R ) = R + h  (3 

where 

1-3 cosm (RIR,,) , for RIR- 
h= 

I 0, for R>R-. 

In eq (a ) ,  f? is the height of the undisturbed fluid at  dis- 
tances far from the vortex center, N is a constant with the 
dimensions of height, R is the radial distance from the 
geometric center of the vortex (R2=x2+y2), R,, is the 
radial distance from the center of the system at  which the 
vortex motion vanishes, m is a positive integer, and Q is a 
rational number. &=1/3 and R,,,=405 km were used in 
all of the experiments. Under the gradient balance assump- 
tion, the magnitude c of the fluid velocity is given by 

A 

The east-west and north-south velocity components me 
then given by 

u= -c sin tj 

v=c cos tj 

where 4=tan-'(y/x). Figure 6 shows radial profiles OI h 
and c for various values of the parameters E l  and rn which 
were used in the computations. 

A 
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FIGURE 6.-Radial profiles of the height departure and magnitude 
of the fluid velocity for the balanced-vortex initial condition. 

The numerical values of the functions were computed 
for the first (northeast) quadrant only, and assigned to the 
remaining three quadrants under the symmetry conditions 
of the system. 

5. FINITE-DIFFERENCE EQUATIONS 

Equations (2a, 2b, 2c) are transformed to the 
discrete form of area-integral equations by methods 
described in detail by Noh (1964). This technique was 
used by Kurihara and Holloway (1967) in a global primi- 
tive equation model, with some success. A brief descrip- 
tion of the method follows. If u is an arbitrary element 
of area, then for any scalar a we can write the integral 
eauation 

as 

where (-) is the mean value over the element u and 
AS, is the area of u. B is either a source term for a or an 
external force. V H -  is the horizontal divergence operator, 
v, is the outward normal component of the horizontal 
velocity vector V H ,  and C is the boundary contour of the 
area element (r. In our experiments all elements are 
rectangles, hence the line integral in eq (11) can be 
written as 

FIGURE 7.-A typical box configuration. I n  the text, the area integral 
is being evaluated over the box u0. LI is the length of thc line 
segment common to  the boxes u0 and UI, and Lz is the length of 
the segment common to go and UZ. 

where the x r  and yi are the 2, y coordinates of the vertices 
of the rectangle. These integrals are evaluated by assum- 
ing that the integrands are given on the line segments 
(box sides) by the mean values of the variables from 
adjoining boxes which have a common side. In  the fol- 
lowing, we will use operator notation similar to that of 
Kurihara and Holloway (1967). See section 2 of their 
paper for a complete discussion of the operators' charac- 
teristics. I n  their notation, 

4;c",,adl =N(Z)AS, (13) 

where a is given by a=hZ, with 2 an arbitrary scalar, 

Here, the summations are over the 2 boxes which are 
contiguous to  the box u=u0; E, W, N, and S represent 
the east, west, north, and south sides of the boxes which 
all have their sides oriented in the cardinal directions, 
and W ~ = L J A S , ,  where L ,  is the length of the line segment 
common to uo and ul .  Figure 7 shows a typical box con- 
figuration. 

I n  the momentum equations, the Coriolis terms are 
given by 

.f(%)ASu . (15a) 
and f(z> ASu (15b) 

sincef is a constant in the experiments. 

gradient terms 
Of final concern are the integral forms of the pressure 

g h-dS  

and 
gJh $ as. 

Two distinct numerical forms arise from the applica- 
tion of simple cubature rules in evaluating the integrals 
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TABLE 3.-List of the numerical integration experiments. EJ i s  the easterly jet initial state; B V ( m , H )  i s  the balanced vortex initial state for the 
) respectively; C B  represents the closed boundary condition, and CC 

A 
parameters m and H; L and G are the operators La( 
represents the east-west cyclic continuity boundary condition. 

) and Gs( 

Experiment Experiment Initial state Grid type At Number of Gradient Initial data Boundary 
group number (S) iterations operator condition -- 

1 EJ PStep:15 90 100 L h s  cc 
2 EJ >Step:15 90 100 L hu cc 
3 EJ PStep:15 90 100 ff hu cc 
4 EJ %Step:15 90 960 ff hu cc 

- -- - 
A 

B 

C 

6 EJ 28tep:lti 90 960 ff hu cc 
6 EJ Qreded:15 90 960 a hs cc 
7 BV(2,30) 2-Step:lti 90 960 
8 BV(530) Graded:16 90 960 
9 BV (2,301 2-Step:16 90 1,920 

ff 
ff 
a 

14 BV(4,100) Constant:16 90 1,920 
16 BV(4,lOO) 2-Step:lS 90 1,920 
16 BV (4,lOO) Graded:lO 60 2,afxl 
17 BV (4,lOO) CW8ded:lb 90 1,920 

hu 
hu 
hu 

hu 
hu 
hu 
hu 

Offcenter 18 BV (4,100) ConstantAb 90 1,920 ff 

D 

a hu 
a hu 

hu 
a hu 

hu 

hu 
hu 
hu 

cc 
cc 
CB 

CB 
CB 
CB 
CB 

CB 
CB 
CB 
CB 

CB 

CB 
CB 
CB 

is taken as the average value of the total energy of the 
fluid in thejth box of the kth annulus. ASjsk is the area of 
the box, u is the total area of the region under considera- 
tion, and x is the mean height of the free surface over u . ~  

For the Graded:15 grid experiments, eq (22) was 
written as 

where TE,,, has the definition given by eq (23). In  this 
case, ~ W , , , = ( k 6 ) ~  km2, the number of boxes, N,, in the 
kth annulus is N,=16k for k l  7, and N6=196 (since 
k=6 represents the 14x14 interior fine mesh). The 
Graded: 10 grid formula for is analogous to eq (24). 
Equation (22) reduces to simple summation formulas for 
the Constant: 15 and 2-Step: 15 experiments. 

Similar formulas for computing the mean value of the 
square of the v-component, v2, were used in several of the 
experiments. 

- 

6. THE EXPERIMENTS AND RESULTS 
Table 3 lists the experiments that are discussed in this 

paper. Of these, we present detailed results for the 
groups A, €3, C, and D, since they provide the main basis 
for determining the relative merits of the various grid 
~ys tems.~  

2 After 2,ooO iterations, decreases by approximately two parts in 1012, which indicates 

J The remaining experiments are discussed in the appendix. All computations were 
that the leapfrog time-integration scheme is slightly dissipative. 

Experiments 10 through 13 were computed using four 
different grids with the same weak vortex as the initial 
state. Experiments 14 through 17 repeated those above 
except that the initial state was a more intense vortex 
(fig. 6). In  all these cases, the initial vortex was specified 
so that its center coincided with the geometric center 
of the grid. On the other hand, experiment 18, which is 
comparable to  experiment 14, had the center of the 
initial vortex displaced 7 . 5 4  km to the northeast of the 
geometric center of the grid. 

A very intense vortex (fig. 6) was specified as the initial 
condition for experiments 19, 20, and 21. Here, the three 
grids with a (15 km)2 interior box were used, and the 
integrations were continued out in time until the calcula- 
tions showed that the system was computationally un- 
stable (the criterion was that the total energy increase by 
50 percent over the initial value). 

The following values of parameters were used in all the 
experiments : 

j = 5 x  10-5~4, 

and 
E=IOOO m, 

g=9.8 m/sz. 

THE EASTERLY JET EXPERIMENTS 

Group A. Since the analytic system of equations with 
the specification of easterly jet initial conditions and 
appropriate boundary conditions yields a steady-state 
solution, the behavior of the errors introduced by the 

performed on a Control Data Corporation 6600 computing system. finite-difference approximation to  the initial conditions 

443-550 0 - 'it - 3 
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FIGURE &--Time variation of v* for the experiments in group A. 
Note the change in ordinate scales. 

is a measure of the error induced by the mesh. These 
approximations are not in geostrophic balance since both 
the height and fluid velocity fields were analytically 
specified. Figure 8 shows the temporal variation of f, 
which is zero analytically but finite nonzero in the 
integrations because of the above-mentioned errors. Three 
3-hr periods are depicted from the 24-hr forecast period 
for both experiment 5 and experiment 6. In experiment 5 
we note that after an initial growth of 7, by 12 hr  the 
computations become stable (bounded), and 7 exhibits 
a slow (-1 hr) oscillation with time. I n  contrast, experi- 
ment 6 shows a growth of Tz to  values which are an order 
of magnitude larger than that of experiment 5. Here, 2 
reaches a maximum (12.7X 10-3m2s-2) at  about 10 hr and 
begins to decrease with time. After 22 hr, the graph ex- 
hibits a slow, bounded oscillation with values approxi- 
mately five times larger than those of experiment 5 .  
The traces of Am (not shown) exhibit a similar behavior, 
with the experiment 6 trace having larger amplitude than 
that for experiment 5. 

After 24 hr, the v-component fields (not shown) in both 
experiments show a tmo-space increment (2As) noise pat- 
tern evenly distributed over the entire region of integra- 
tion. (This is also true for the height fields, with the 
maximum variation being less t,han 1 m.) Of interest is 
the fact that over the 12 X 12 equalinterval fine mesh 
which is common to both grids, 3 = 0.00462 for experi- 
ment 5 and 3 = 0.00205 for experiment 6 .  This is opposite 
to the result for the entire regime and indicates that, for 
fluid motions with moderate shear in the mass and momen- 
tum fields, the graded grid structure induces relatively 
large errors of alternate sign throughout the annuli struc- 
ture. However, the central region yields a state of less 
error as the computations stabilize. 

A detailed examination of the initial tendency patterns 
for both experiments revealed that the errors in the 
tendencies computed a t  the inner interface boxes in the 
2-Step:15 case were at  times two orders of magnitude 
larger than those for the Graded:15 case. This helps 
explain the paradoxical behavior of the 2 statistics pre- 
viously mentioned. Although the errors forced by the 
interface of the 2-Step: 15 grid are relatively large, the 
cumulative effect of the errors induced by the graded grid 
over a much larger portion of the integration region is a 
larger value of 3. This is also true of the Am computa- 

tions. After 960 iterations, the innermost region (12X 12 
central mesh) of the graded grid had less error than the 
equivalent portion of the 2Step grid; that is, the amplitude 
of the induced gravity wave structure was larger in the 
latter case. This can be attributed to the abrupt change 
in grid size at the interface of the coarse- and fine-mesh 
regions. In  general, though, the 2-Step type structure 
gives a better overall representation of the variable states 
than a graded structure in cases where there are non- 
negligible shears in the velocity and height fields in the 
nonuniform portions of the grid. 

732 MONTHLY WEATHER REVIEW \lo! 'T Pdo. $0 

THE BALANCED-VORTEX EXPERIMENTS 

In  the following discussion, the root-mean-square emr611: 
of the height field (denoted by RMSE:h) is used as a 
comparative statistic. The data are taken from the (21C1)~ 
km2 central square region which is common to the four 
grids and contains the most active portion of the vortex. 
The comparison is with the data from the initial time to. 

After the initial time step, the error in the height and 
velocity component fields results from a combination of 

1. space-differencing truncation, 
2. forward time-extrapolation, 
3. approximation of the areal mean values of the depend- 

ent variables by point values, and 
4. imbalance of the discrete system caused by specifying 

both the height and velocity component fields analytically. 
Croup B. The initial state for these experiments was a 

centered balanced vortex having a height deficit of 30 m 
at the center' and a speed maximum of about 8 m/s near 
40 km from the center. 

Within the first 100 iterations, the computations for all 
four experiments reached quasi-equilibrium (slowly vary- 
ing) balanced states as they recovered from the imbalances 
induced by the initial finite-difference representations. 
Figure 9 shows the percent change in total energy and 
RMSE:h for the 3-hr period ending at  48 hr. The traces 
for the preceding hours of the forecast are not presented 
because of their similarity to those &own. 

Of all the profiles of Am, the Graded:15 case shows 
the most active variation, with a pronounced two time- 
increment (2At) oscillation. Otherwise, all four profiles are 
remarkably similar in that the traces show no appwent 
trend and are upper bounded by the 0.01 percent change 
isoline. The RMSE:h profiles have the same trend and 
boundedness character as the Am profiles except that 
here we do see the effect of the variable-resolution mesh 
on the computations. The control computation (exp. 10) 
has an average height error which is generally less than 
0.5 m, whereas the other experiments have average height 
errors between 0.75 and 1.25 m. Each of the curves exhibits 
a 4At-6At oscillation which is probably directly related to 
the gravity wave motion on the free snrfacc. Considering 
the energy and mean height changes together for each case, 
we note that the Graded:lO results are slightly better 
than the comparable 2-Step:lS rcsults and both of these 
are only slightly better than the Graded:15 results. In 
terms of computational expediency, the %Step grid would 
be preferred. Experiment 11 was continued out to 77.8 hr. 
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The profiles are similar to those shown; the percent change 
in total energy remains less than 0.01 percent. 

Group C. The initial state for these experiments was a 
more intense vortex than that used for group B. The 
central height deficit was 100 m (10 percent of the un- 
disturbed fluid height) and the maximum tangential speed 
was 15.5 m/s near 30 km from the center (fig. 6). Figure 10 
shows RMSE:h for five 3-hr intervals during the 48-hr 
forecast period. We note that the large error during the 
initial iterations diminishes (stabilizes) rapidly in the 
equal-mesh case (exp. 14). For this case, throughout most 
of the forecast, RMSE:h remains in the range 1.0-1.25 m 
and oscillates with a period of about 9 min. In the other 
cases, the error is about twice that magnitude and the 
oscillations have larger amplitudes with variable periods 
of from 4 to 9 min. Of the three variable grids, the 
Graded:lO (exp. 16) gives a slightly better height field for 
the first 24 hr, but the three profiles are comparable at 
36 hr, with the Graded:15 and 2Step:15 experiments 
having slightly better results at 48 hr. The profiles of 
Am (fig. 11) for the 3-hr periods corresponding to those 
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height of the fluid at time nAt (Equal Mesh:15=Constant:15). 

of RMSE:h give further insight into the behavior of the 
computations. Initially, all four profiles of A T E  have the 
same character except that the 2Step:15 and Graded:15 
curves exhibit slightly larger amplitudes. The profiles for 
experiments 15, 16, and 17 have trends which indicate 
very slow increases in total energy. In  the 3-hr period 
centered at  24 hr, all experiments show a tendency for a 
2At oscillation in the profiles which is most pronounced in 
the Graded:lO and Graded:15 cases. The Graded:lO am- 
plitudes are modulated, with maximum amplitude oc- 
curring a t  about 50-min intervals. The 2-Step:15 and 
Graded:15 cases exhibit the largest percentage changes. 

The next period shown (centered a t  36 hr) has profiles 
which have a pronounced 2At oscillation for alI the 
experiments in this group. Again, the amplitudes are 
largest in the Graded:15 and 2Step:15 cases. The am- 
plitudes for the variable grid cases are modulated, the 
#2-Step:15 with a, period of approximately 120 min, the 
Graded:15 of about 90 min, and the Graded:lO of about 
35 min. The Graded:lO profile is beginning to show changes 
which indicate that the computations are becoming less 
stable. 

At 4 5 4 8  hr, the control experiment has a relatively 
steady profile with an average percentage change of 
about -0.005. Of the three variable-grid experiments, 
the Graded:15 computations give energy changes which 
most nearly resemble the control case in both magnitude 
and variation; the amplitude of the oscillations is less 
than that of the later periods previously examined, and 
the profile displays little change from the initial values. I n  
contrast, the 2-Step:15 and Graded:lO experiments both 
ex$ibit total energy changes of variable amplitudes which 
are from four to  six times larger than that for experi- 
ment 1'7. The Graded:lO profile continues to show a 
marked variable modulation of the 2At oscillation with an 
average period of about 35 min. The vaxiation in amplitude 
has changed considerably from the earlier periods, the 
changes being by a factor of two to four. I n  the above 
experiments, the pronounced 2At oscillation in Am can 

be directly related to the behavior of the kinetic energy 
changes. The changes of mean available potential energy 
have relatively smooth oscillations of a longer period. 
Also, the final periods of the 2Step:15 and Graded:lO 
forecasts have velocity component RMSE's (not SB~QWD) 
which have a slight 2At oscillation. The above sympt~ms 
strongly suggest that the computational noise is pre- 
dominant in the velocity component fields. 

Figure 12 shows the departure from initial height of the 
fluid in one Q$ the four central boxes of the grid h a :  the 
initial and last 3-hr period of the forecast. In  all cases, 
these four boxes have equal height values throughout the 
forecast period. Only the experiments which used a (15 

interior box are shown. The initial displacements i~ 
all cases are a result of the initialization (finite diffemmc- 
ing) errors and can be thought of as an impulse which 
initiates free oscillations in the systems. The effeots (PI 
grid variation become apparent after about 20 min with 
gravity wave interactions causing changes in amplitudes 
and periods of the oscillation. In all cases the period was 
about 6At initially; the equal-mesh profile retahs b h  
period throughout the forecast but the profiles are ~~cpdi- 
fied in the other cases to those with somewhat longer and 
variable periods. These modifications are undoubtedly 
due to the differences in the behavior of the computatkmd 
gravity waves which are generated by the variable-mesh 
differencing. The amplitude of the control case profile 
remains steady after the system reaches an equilibrium 
state but the other amplitudes show increases which p0- 
ably result from the superposition of the additional 
gravity waves mentioned above. The Graded:15 and 2- 
Step:l5 profiles are very similar, both having an average 
variation about four times that of the control case. 'lhan 
views of the velocity component and height fields (not 
shown) display symmetries throughout the entire formmt 
period. The u, er fields have radial (rotational 180") 
symmetry, and the h field has rotational (9Qo) smew- 
Detailed time-step examinations of the fields showed that 
there was apparently no time splitting of thd fields; but 
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FIGURE 13.-Time iteration number of the first occurrence of certain 
percent changes of kinetic and total energy for the Pxperiments 
in group D (Equal Mesh:15= Constant:15). 

that the computations did produce 2AS waves of small 
amplitude which were more evident in the control-case 
computations. 

The effects of nonsymmetry are apparent in the results 
(not shown) for experiment 18 where the symmetric 
initial state was prescribed off-center in the grid system. 
Here, the gravity waves reflected a t  the boundaries a t  
different times and the wave interaction pattern quickly 
destroyed the symmetry of the various fields. The center 
of the system remained in the box where it was initially 
prescribed, but its position is not stationary as evidenced 
by the oscillations in the mean velocity component 
values for this box. After 42 hr, a 2At oscillation became 
evident in both the percentage changes in kinetic energy 
and available potential energy, with the percentage 
changes in total energy increasing to an order of magnitude 
larger than those in the comparable centered-vortex 
experiment (exp. 14). The RMSE profile for the height 
field (not shown) has the same character as that of 
experhen t 14. 

GToup D. The very intense vortex specified for this 
group of experiments gave a central height deficit of 
200 m and a speed maximum of 22.1 m/s at  50 km from 
the center (fig. 6). With this specification the initialization 
errors are of much larger amplitude than those for groups 
B snd C, and amplification of the computational errors 
through nonlinear interactions proceeds at a more rapid 
rate than for those experiments. 

The profiles of Am and RMSE:h (not shown) have 
relatively the same character as those for the group C 
experiments (figs. 10 and 11) except that +increases in 
amplitudes are in evidence earlier in the forecast period. 
I n  the later periods of the integations, there is a pro- 

nounced 2At oscillation in the Am and kinetic energy 
profiles for each experiment. 

Figure 13 gives the iteration count of the jirst occurrence 
of selected percentage changes (from the initial values) of 
kinetic and total energy. The 2-Step:15 grid computations 
reached all percentage change levels (greater than 0.02 
percent) in the least number of iterations, the Constant:15 
computations in the largest number, and the Graded:15 
somewhat half-way between the two. All three experiments 
showed changes of up to 0.05 percent in kinetic energy 
during the initial 550 iterations, followed by moderate 
increases in the 2-Step :15 computations and relatively 
slow increases in the other two cases. 

In  these experiments, the velocity component and height 
fields showed symmetries similar to those described for the 
group C experiments throughout most of the forecast 
period. During the later iterations, noticeable asymmetries 
appeared in these fields, and as the computations ap- 
proached instability, the symmetry in the fields was totally 
destroyed. 

Discussion of the group B,  C, and D results. The initial 
error pattern in the height field has a wave form given 
approximately by 

E(R) sin 48, 0 < 8 < 2 r  

where 8 is the usual horizontal azimuth displacement. 
E(R) is given schematically in figure 14, for experiments 
14 through 18. This initial fluid displacement from the 
balanced state excites gravity wave propagation which is 
both radial and tangential; the tangential propagation 
being due, in part, to advection by the vortex fluid motion.' 

The total height-field contour pattern is altered from 
the initial concentric circles to concentric elliptical shapes, 
and the contours retain this characteristic throughout the 
forecast periods regardless of the mesh on which the inte- 
gration is performed. Wave reflection at the boundaries 
and subsequent wave interaction give rise to further error 
components because of the nonlinearity of the system. 

In  the variable-grid experiments, the mesh variation 
adds its error contribution through the advection of large 
grid-scale truncation by the gravity waves which reflect 

4 In the equal-mesh computations (exp. 14) the initial impulse traveledradially to the 
boundary in 45 min (WAt), which gives an average wave speed c=165 m/s. 
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from the boundaries. The truncation error is local in nature 
and initially dominates in the center of the grid system 
where the vortex is relatively intense. ]But here A S  is 
minimum; hence, the maximum truncation error is equiv- 
alent to that for an equal-mesh system having the minimal 
grid increment. Within several tens of iterations, the ex- 
cited truncation error of the coarser grid contaminates the 
computations on the fine sections of the grid; and all sub- 
sequent error analysis must use the largest mesh increment 
in an error estimate. 

The above phenomenon is manifested in the profiles of 
RMSE:h for the experiments, and therefore aids in a valid 
comparison of the integrations on the various grid systems. 
Certain aspects of the grid systems must be considered 
in the analysis. Referring to figures 2 and 3 and table 2, 
we note that the 2-Step:15 system has fixed fine resolution 
in the (300 km)l central region whereas that for the 
Graded:15 is in the (210 km)2 central region. For the 
experiments in group B, this is relatively unimportant 
since the variations in the initial vortex height field and 
velocity components are small in the region from 105 km 
to 150 km from the center (fig. 6). The group C vortex 
(fig. 6) has a greater variation in this region. The 
Graded:lO system (fig. 4) improves the resolution nf the 
vortex centers since the velocity component maxima are 
contained within the (100 km)2 centeral region that has 
10-km resolution. As was pointed out previously in the 
group B experiments, although the Graded:lO results were 
best relative to the control case, the comparable 2-Step:15 
results indicate that the 2-Step:15 mesh would give 
sufficient resolution for weak vortex-type motions. The 
utility of the Graded:15 system was not realized here 
because of the weak character of the physical system in 
regions of grid variation; whereas the grid variation 
given by the Graded :IO system enhanced the representa- 
tion of the vortex near its center. The truncation error 
generated in the coarse-mesh regions of the latter case 
was undoubtedly small because of the small amplitude of 
the gravity waves generated by the processes described 
previously. 

The vortex prescribed in the grcup C experiments proved 
to  be a more crucial test of the mesh systems. Clearly, 
for the first 24 hr of the forecast period, the Graded:lO 
variable grid yielded integrations which were superior to 
the other variable grid results; but by 36 hr the integra- 
tions on that grid gave results which were comparable to 
the 2Step:15 and Graded:15 results. By 48 hr, this 
htegration appeared to be degenerating under some form 
of computational instability. Detailed time-step examina- 
tion of the height and velocity component fields revealed 
no time splitting of the fields as is usually observed in 
h e m  models which use the leapfrog time-integration 
scheme. But  the large amplitude 2At oscillations of the 
A D  profile, when considered together with increasing 
values of RMSE:h, strobgly suggest the presence of 
aliasing errors common to nonlineat systems that do not 
d a a p  the large wave-number space oscillations. The 

fact that the system remains stable may be a result of &e 
inherent smoothing which is built into the LLbox’y method 
of integration, but it appears that the computations m e  
yielding to an accumulation of energy in the short W ~ Q *  

lengths, and the physical system is deteriorating from a 
quasi-balanced state. 

The 2At oscillation is evident in the A?% profiles for all 
the integrations in this group, including the control cam. 
Hence, we might interpret this as a manifestation of an 
iteration-by-iteration “return to balance” phenom6won.S 
The increase in amplitude of the Am profiles BOE &he 
variable-grid cases reflects the ability of the system ta 
restore a balance under the influence of the errors generabd 
a t  each time step. 

Although the fine-resolution region of the 2Step:IS grid 
contains a larger section of the vortex than does the 
analogous region of the Graded:15 grid, the resulb of tho 
integration clearly demonstrate the advantage of a g r d n d  
change in mesh increment over an abrupt one. On ea& 
mesh there is essentially an increase in box area of 4 b 1 
(table 2) going from the center of the system to the 
boundary. Figure 10 shows that there is no large difIerence 
in the BMSE:h profiles for either case although tbere is 
an indication that the height field for the Graded:15 hte- 
gration may be slightly better than that for the 2Step:15 
a t  the end of the 48-hr period. Table 4 lists the 3-hr t h e  
average of the RMSE:h for  the periods centered at 1.5, 
24, and 46.5 hr. We note the obvious deterioration of the 
Graded :10 computations and the relative improvement 
of the Graded:15 computations over the 2Shp:15. The 
profiles of Am for these cases show that there is indeed 
a difference in the character of the forecasts which is grid 
dependent. 

The phenomena discussed above for the group C ex-p&- 
ments are observed in the group D experiments e~cept 
that they occur on a much shorter time scale. Here, the 
computational mode interacts nonlinearly with a large- 
amplitude physical mode and the computational noke 
grows a t  a rapid rate. The graph of energy changes versus 
iteration count for the control experiment 19 (fig. 13) 
shows the typical energy increases which are associated 
with the nonlinear computational instability of integra- 
tiom done on a constant-resolution mesh. The d d i t i ~ ~ ~ d  

TABLE 4.-Three-hr time averages of 
16, 16, and 

RMSE:A 
ir 

experimmb 

Experiment number T b e  periods (hr) 

0-s 66.646.6 e@ 
15 2 07 2 05 2 41 
16 1.92 1.83 261 
17 2 22 2. 12 229 

5 In the Qraded:lO experiment (exp. le), the modulated 2At oscillation in the 
profile could possibly be interpreted m a “folding” of a temporal 2.1-2.2 increment 0scW 
tion in themanner described by Robert et al. (1970). The computational and/or physical 
significance of this frequency in the temporal variation of an areal average Is not rea@ 
apparent. 
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computational noise introduced into the calculations by 
the use of a variable grid structure stimulates the growth 
of computational errors. This is evidenced by the graphs 
of energy changes f w  the 2-Step:15 and Graded:15 grid 
experiments (fig. 13). 

In these experiments, kinetic energy is the principal 
component of the total energy; the available potential 
energy of the system is smaller by an order of magnitude. 
From the graphs (fig. 13) we note that the kinetic energy 
quickly undergoes relatively large percentage changes, 
but these are compensated for in the total energy change 
by very large percentage changes in available potential 
energy (not shown). Comparison of the results of the 
2-Step:15 and Graded:15 grid computations against those 
for the Constant:15 grid shows that computational trends 
exhibited in the group C experiments were correctly 
interpreted. Here, the kinetic energy changes in the 
Graded:15 experiment closely resemble those of the control 
computation up to the 0.5 percentage change level, 
whereas those for the 2-Step:15 case differ noticeably. 
In the interval 0.05-0.5 percent, a percent change level 
was reached in the Graded:15 grid computations, on the 
average, in 85 percent of the number of iterations taken 
by the control case; whereas the average was 44 percent 
in the 2Step:15 case. 

A comparison of the percent changes of total energy 
shows that the number of iterations taken to. reach a 
particular percent change level (in the interval 0.2-10.0 
percent) was on the average 79 percent of the control 
case value for the Graded:15 grid case, whereas in the 
2-Step:15 case the number was, on the average, 59 percent. 
These statistics certainly indicate that the error growth 
rate for computations done on the graded-type variable 
grid is substantially less than that for the comparable 
computations on a telescope-type grid. 

7. SUMMARY AND CONCLUSIONS 
Three variable Cartesian grids were used in the 

numerical integration of the shallow-water equations 
over a square two-dimensional domain. The grids were 
selected from a family of Cartesian grid structures which 
possesses many degrees of variation. The 2-step formu- 
lation has the advantage of having only one interface a t  
which there is an abrupt change in mesh length, whereas 
the Graded:lO ,,and Graded:15 systems of the double 
annulus group effect a gradual change. The single and 
triple annulus configurations (fig. 1) were not used since 
they gave variations which are either too pronounced 
or too gradual. For the experiments considered here, we 
restricted the inner to outer ring mesh ratios to be either 
3:l or 2:l. 

Integrations on fixed fine-resolution mesh were done 
in three of the cases (groups B, C, D). These computations 
offer criteria against which the variable grid experiments 
can be compared. The differences in the results are due 
to the variation in mesh structure which (1) alters the 

forms 6f the second order finite-difference equations in 
the regions of grid variations because of the box-method 
formulation and (2) introduces further approximation 
errors through an averaging process along the line seg- 
ments which form the boundaries of the individual boxes. 
This essentially introduces spatial smoothing into the 
integration formulas. The equations do not conserve total 
energy, but the computations for the control (constant 
mesh) cases showed no apparent trend toward an increase 
or decrease of total energy throughout the forecast periods 
for experiments 10 and 14, and for most of the experiment 
19 forecast. Hence, we can consider the finite-difference 
equations to be “nearly” total energy conserving. The 
weak vortex computations (group B) yielded total energy 
changes which closely approximated those of the control 
case. 

In  the computations with a more intense vortex (group 
C), the departures from the control case are pronounced 
in some instances but remain less than 0.03 percent in 
magnitude. The behavior of the height field is more 
striking; the control case RMSE:h shows a bounded 6At 
oscillation (fig. 10) which is strongly correlated with the 
free oscillation at  the vortex center (fig. 12), and which 
has a temporal mean of approximately 1.25 m. The 
variable-grid profiles of RMSE :h have temporal means 
from two to three times larger with more pronounced 
variations. The group D experiments purposely used a 
very intense vortex as the initial state in order to  observe 
the behavior of error growth and nonlinear computational 
instabilities. The results prior to the onset of instability 
replicate, on a shorter time scale, those of the group C 
experiments. 

Although the differences in the results are due entirely 
to the grid structures, the amplification of some error is 
due to the nondamping characteristic of the time integra- 
tion scheme. No effort was made to suppress the high- 
frequency tempord and/or spatial oscillations as might be 
done, say, with a Lax-Wendroff (1960) type integration 
rule; this is evident in the results for experiment 17. 

Considering the experiments in to to, the results indicate 
that, for a weak vortex-type motion embedded in a zonal 
current, the 2-step type telescope grid might be adequate 
since the integrations have relatively small error. The 
computational times and computer memory requirements 
are minimal when compared to the comparable equal-mesh 
computations. On the other hand, for an intense vortex a 
graded-type grid yields relatively better numerical 
integrations at  the expense of an increase in computational 
time (compared to that for the 2-step type grid). Clearly, 
though, relative to  the constant resolution grid integra- 
tions, the graded-type variable grid yields integrations 
that are more satisfactory than the telescope-type 
grid in terms of both the error induced by the grid struc- 
ture in the differencing schemes and the error growth rate. 

The application of these horizontal grid structures to 
numerical integrations of primitive equation multilevel 
models of atmospheric systems can result in considerable 



VOI. 99, No. 10 738 MONTHLY WEATHER REVIEW 

[Received November SO, 1970; rewised February 8, 19711 

savings in computer memory requirements and running 
times. The graded annulus-type grids are systematically 
constructed and allow a large range of variation and resolu- 
tion. For systems which are active in these central regions 
and quiescent in the peripheral regions, the central 
mesh can be specified to give resolutions that would 
permit definitions of small-scale phenomena. In  these 
cases, the small time-increment needed to maintain 
computational stability would be a major consideration. 
For long-term integrations, such as in the study of hurricane 
dynamics, the growth of any computational mode (as 
evidenced in exp. 17) must be controlled since vari- 
able-type horizontal grid structures obviously generate 
error components that can become unstable if not 
damped. This instability is primarily due to nonlinear 
interaction. In  these cases, a time integration scheme 
can be used that minimizes, or eliminates entirely, the 
computational mode. For model investigations of very 
short time-scale phenomena, such as cumulus dynamics, 
the damping of high-frequency oscillations might be 
unnecessary. 

APPENDIX 

Experiments 1, 2, 3, and 4 were designed to compare 
the height gradient operators Ls( ) and Gs( ). These 
experiments showed that the momentum tendencies and 
the v-component field had less error when the Gs( ) 
operator was used. Hence, the &a,( ) operator was used 
in all of the remaining experiments. Experiments 3, 4, 
and 5 differ only in the manner of specifying the initial 
values for the box-means of the dependent variables. In 
experiment 5, the point values of the functions [eq (5) 
and (S)] at  the box centers were selected as the initial 
means. In  experiments 3 and 4, initial values were speci- 
fied through analytical integration of eq (5) and (6). A 
comparison of the results for - -  these experiments showed 
that the correct mean values hu, hv, and% gave slightly 
better results initially, but after several hundred itera- 
tions there were no significant differences in the ? and Am statistics for these experiments. This indicated that 
the computational (finite difference) errors soon dominated 
the initialization errors in the calculations, and the point 
values hu, hv, and h were sufficient for beginning the 
integrations. The point values were used in the initiali- 
zation of all subsequent experiments. 

Experiments 7, 8, and 9 had a weak, flat profile vortex 
(fig. 6) for the initial state. East-west cyclic continuity 
was used in experiments 7 and 8;  experiment 9 used a 
closed system. Comparisons of the experiments showed 
that, after an initial adjustment, the changes in mean 
total energy from the initial value for each experiment 
exhibited a smooth oscillation with time; but the ampli- 
tude of this oscillation in experiments 7 and 8 was -1Q2 
kJ m-2 whereas for experiment 9 it was -1Q-l kJ 
(the mean total energy TE is on the order of lo4 kJ m-2 
in these experiments). This behavior is related to the 
gravity wave interactions and the symmetry of the cal- 
culations. I n  the closed system, the initial perturbations 
on the prescribed height field (which are due to the dif- 
ferencing of the analytically specified initial fields) am 
symmetric and remain so throughout the entire integra- 
tion. By removing the east and west walls and thereby 
allowing wave propagation through the system (instead 
of wave reflections at  the walls), the symmetry patterns 
are altered; a strong beat pattern is induced and the north- 
south symmetry is strongly modified. The remaining 
experiments (10 through 18) were performed with &he 
closed system to  avoid this effect. 
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